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ABSTRACT
There has been an increasing trend of performing inference
on data collected by smartphones to provide context-aware
location-based services. When this inference is performed
using supervised analysis, these services need ground truth
if high accuracies are desired. While accuracy is less of a
concern for services targeted at individuals, it is important
when individual data is aggregated for semantic analysis of
a population. However, traditional techniques for obtaining
ground truth such as paid crowdsourcing are challenging in
this domain since the ground truth is uniquely available to
the user. Therefore, the user needs to be the source of ground
truth for these services.

This motivates the need for Participatory Classification, a
framework that is able to satisfy the need for minimally inva-
sive, ongoing, ground truth collection from regular users at
scale. We present an architecture that can be used to enable
this framework for such services, and evaluate the frame-
work in the context of an end-to-end prototype that we built.
The prototype minimizes the burden on the user while clas-
sifying trips by travel mode, and uses the classified trips to
generate a personalized carbon footprint for the user and ag-
gregate data such as commute mode share, for use by urban
planners. With this prototype, we collected 7439 labelled
sections from 44 unpaid volunteers over a total period of 3
months.

1. INTRODUCTION
As mobile systems using smartphone technology have

matured, we have seen the emergence of two distinct
and complementary fields of study - in participatory
sensing, observations from a large number of lay users
are aggregated to map environmental parameters (e.g.
air quality and potholes) for urban regions and in in-
dividual activity classification, an individual user’s
activities (walk, bike and drive, sleeping, eating, etc.)
are inferred by extracting semantic analysis from smart-

phone sensors. The main difference between the two
fields is in their focus - the first is at a societal level and
the second is at the individual level.

In this work, we are interested in trip mode classifi-
cation across a broad population in order to use the ag-
gregate observations to improve the transportation
system at urban scale, similar to participatory sensing;
as well as to provide a personalized record of the user’s
individual travel mode history and carbon footprint,
which is similar to individual activity classification.

We are interested in accurate classification from many
individuals with the least burden on the user in order
to maximize participation. We investigate how to en-
gage the individual effectively in performing classifica-
tions that can both drive the learning process and pro-
vide enough accuracy to generate a reliable aggregate
picture. Therefore, we combine the two fields and de-
velop a framework for “participatory classification” in
the context of sustainable land use and transportation
planning.

Practical considerations typically dictate the follow-
ing procedure for activity classification: 1) an initial
phase of supervised learning (training), 2) a static set of
classifiers, and 3) ongoing collection of unlabelled data
only for prediction (e.g. [10], or [14]).

However, this method presents several shortcomings
when it comes to model estimation accuracy in our do-
main: 1. Variability across users is hard to reconcile
into a single generic model for example, different peo-
ple bicycle at different speeds, 2. Context sensitive clas-
sifiers are needed when sensing data is insufficient for
disambiguation for example, sensing data cannot distin-
guish carpools from single occupant vehicles, and 3. The
same user might have different characteristics at differ-
ent times for example, a user may ride at her child’s
pace while dropping off at school.

The development of user-specific, context-sensitive clas-
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sifiers for basic activity sensing ([15], [16]) has addressed
these problems, but has introduced a new requirement
for user-specific ground truth to train these user-specific
classifiers.

In addition, if applications are purely targeted to-
wards providing user level feedback, their accuracy is
less important since the user is the consumer of the in-
formation, and can ignore errors while making changes.
But, intuitively, having high accuracy data is important
at the aggregate level to avoid compounding of individ-
ual errors. This is particularly important if the aggre-
gate data is to be used for semantic analysis, for ex-
ample,[22] shows that low accuracy rates can introduce
significant bias if the detected trips are used for travel
demand models. Collecting ground truth on an ongoing
basis can increase the accuracy of the data available for
aggregation.

Finally, cold start is a potential problem on new users.
The aggregated classifiers can be used to bootstrap at
the initial stage of the classification.

However, ongoing collection of user-specific ground
truth is subject to the following constraints. a) labels
can only be assigned by the user. One standard tech-
nique to generate labels for large amounts of unlabelled
data is to use crowdsourcing by paid humans who can-
not access the ground truth. However, that technique
cannot be used to accurately infer user intent. b) as-
signment of labels can cause a substantial burden, which
should be mitigated. This means that techniques that
require the user to manually trigger the entry of ground
truth, or to visit a website later, are not sustainable
at large scale. So the primary challenge for participa-
tory classification is that of minimally invasive ground
truthing at scale.

1.1 Contributions
Our contributions are all related to addressing the

challenge above.
1. We introduce the notion of Participatory Classi-

fication, which is a framework to explore ideas
around engaging the individual effectively in per-
forming classifications that can both drive the learn-
ing process and provide enough accuracy to gen-
erate a reliable aggregate picture.

2. We explore the use of prompted recall directly on
the smartphone to collect ground truth for a large
number of trips, highlighting low confidence trips
to reduce the burden on the user. While there
have been prior projects that have collected large-
scale GPS traces, and prior projects that have
worked on activity classification, their traces were
collected without ground truth, and/or the partic-
ipants were compensated. We have built an end-
to-end prototype with apps in both the android
and iPhone stores and have deployed it to collect

7439 labelled trips from 44 unpaid volunteers for
a period of roughly 3 months.

3. We aggregate individual user information to per-
form aggregate analysis (e.g. heatmaps, arrival
times at work).

The paper outline is as follows: in section 2, we com-
pare our solution to related work, sections 3, 4 and 5
describe the system architecture, functionality and de-
sign choices, section 6 is a brief evaluation, section 7
outlines the future work, and section 8.

2. RELATED WORK
The related work falls into 4 main categories, each of

which is described below. We focus on the individual
activity classification category, which is closest to our
domain. A visual representation of the space is shown
in 1.

Figure 1: Space of related work

2.1 Individual sensing
This includes display of data about a single individ-

ual, for e.g. the Instant Heart Rate Sensing app [1].

2.2 Participatory sensing
We think that large scale datasets such as [4] and [11]

that contain unlabelled GPS data, fall into this cate-
gory since they can be used to generate heatmaps of
human activity. This also includes citizen science or
urban sensing applications such as [5] and [20].

2.3 Individual activity classification
Since this section is most related to our application

domain, we provide a brief review of papers around in-
dividual activity classification in Table 1. Note that
the table does not include commercial applications such
as Waze [23] or Moves [13], which are very similar to
our work, but are closed-source commercial applications
whose architecture and evaluation is unknown. A short
feature comparison is provided here instead.
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Waze Waze uses participatory sensing to determine
traffic flow, but it only works for automobiles and
does not perform any mode classification. It does
allow users to provide information about incidents,
but the incidents are user reported and not learned
from sensed data.

Moves We use moves for our data sensing and initial
classification. However, it is an individual activ-
ity classifier since it does not provide aggregate
results. Further, it does not distinguish between
motorized modes.

To summarize, we distinguish ourselves from the re-
lated work because:
Recall We allow users to correct our classifications by

prompting them to confirm their trip modes di-
rectly on the phone. This has allowed us to build
a large set of GPS traces labelled by user confirmed
transportation mode.

Aggregate We aggregate individual user data in order
to obtain an aggregate overview of temporal in-
formation, such as the distribution of arrival and
departure times at work, and spatial information,
such as the most popular bike and car routes.

Sensors We perform the tracking using GPS data col-
lected from smartphone sensors at relatively coarse
granularity, instead of a separate GPS device with
fine granularity.

Modes We automatically distinguish between motor-
ized modes (car, bus, train, air) in addition to
non-motorized modes such as walking and cycling.

Carbon We provide users with their personalized, au-
tomatically detected transportation carbon foot-
print, and compare it to their peers and emission
reduction goals.

3. SYSTEM ARCHITECTURE
The system architecture diagram is shown in Fig-

ure 2. The various components are briefly described
below. The glossary (Sec. 3.1) might be useful. The ar-
eas with a dark background are currently implemented,
while those with a light background are planned for the
future.

This is a distributed system in which three sets of
data are exchanged via three independent sync mech-
anisms (Trips, Incidents and Results/Incentives).
We have chosen one-way sync as the data transfer tech-
nique since our requirements are for timely, but not
real-time communication, sync transfers allow power ef-
ficient scheduling [24] and are robust to connectivity is-
sues in the mobile environment. The three flows are
largely independent, but come together to inform two
sets of analyses - mode classification/inference of
trips, and generation of information/results for
the user.

Each flow has corresponding databases on each side,

and data flows through the database based on object
state. We illustrate this with the example of the trip
flow, and how it enables participatory classification.

1. Trips that are sensed on the phone have an prelimi-
nary, coarse classification (walk/bike/transport only).
This also allows for more power efficient trip loca-
tion sensing. Completed trips with a preliminary
classification are stored in the queued table until
the next sync.

2. The next sync pushes the newly sensed trip to the
server, where it is stored in the unestimated table.

3. The next time the classifier is run, it generates a
proposed mode for the trip, and the trip is moved
to the proposed table.

4. The next sync pushes the proposed trip to phone
where it is stored in the unconfirmed trip table.

5. The next time the user launches the app, the trip
is displayed as part of the confirmation screen, and
is confirmed by the user. The trip then moves to
the confirmed table.

6. The next sync moves the trip back to the server,
where it is stored in the confirmed table and can
be used in classifying other incoming trips, and in
other analytics.

3.1 Glossary
1. Trips and sections: The data received from the

phone is pre-segmented into trips, each of which
consists of one or more sections. A trip is a log-
ical transition from one location to another, and
may consist of multiple sections. For each section,
we receive the start time, end time, GPS tracking
points approximately every 30 seconds if there is
signal, and a coarse, preliminary inference of the
mode.

Figure 3: Examples of a trips and its sections

2. Unclassified sections: Trip sections that were
detected using phone sensors but have not yet been
confirmed by the user.

3. Classified sections: Trip sections that have been
displayed to the user and confirmed as accurate or
inaccurate.

4. Predicted mode: Mode predicted by our infer-
ence algorithm.

5. Confirmed mode: Mode confirmed by the user.

4. SYSTEM FUNCTIONALITY
We have built an end-to-end system prototype, with

apps in both the android and iOS app stores, that we
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Table 1: Summary of individual activity classification focusing on features relevant to this paper
UbiGreen
[8]

PIER [14] Reddy
(2010)
[19]

Zheng
(2010)
[25]

FMS [2] PhD The-
sis [9]

QT [10] CQue[16] ACE[15] E-Mission

Device separate phone phone separate phone phone phone phone phone phone
Modes walk +

cycle +
transport

walk +
cycle +
transport

walk +
cycle +
transport

walk +
cycle +
bus + car

walk +
cycle +
bus +
subway
+ motor-
bike +
car

walk +
cycle +
transit +
car

walk +
cycle +
bus +
train +
car

walk +
drive
+ still
+ with
friends +
home +
work

walk +
cycle +
drive +
at home
+ in
office

walk +
cycle +
bus +
train +
car + air

Recall on phone python
script

offline web web manual web, op-
tional

phone?? user ini-
tiated on
phone

phone

Carbon green/non
green

Estimate
from
CARB

N N N N Y N N Estimate
from [12]

Upload N auto w/
manual
trigger

manual unspecified auto w/
manual
trigger

manual auto N/A N/A auto

Collection
with
ground
truth

14, 1-4
wks

5, 1 day 16 for
7.50 hrs,1
for 4
weeks,16
for 1
day

65, 3 mos 27, 5 days 6 not re-
ported

7, 2 weeks 10, 2
weeks

60, 6 mos

Collection
without
ground
truth

N/A 30, 6 mos N/A N/A 34, 2
weeks

6 135, 3
weeks

35, > 10
wks

95, > 2
weeks

N/A

Notes on
ground
truth

auto
sense,
trigger,
or manual
enter

ground
truth
only for
“driving”
mode

collection
over 4
weeks
was
”when
possible”

... Target
metric
was val-
idating
50% of
the data

Ground
truth was
reported
in person
to re-
searcher

not re-
ported

Unlabelled
data was
from
reality
mining
dataset

Unlabelled
data was
from
reality
mining
dataset

Reported
using
phone

Accuracy not re-
ported

30% -
90% for
drive only

88% -
96%
(overall)

61% -
83%

not re-
ported

80% -
90%

not re-
ported

75 - 99% not re-
ported

62% -
95%

Compensation$100 to
$300

Researchers Unsure based on
labelled
distance

SGD 30
(USD 25)

Researchers $15/hr Researchers Researchers non re-
searchers,
no money
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Figure 2: System architecture

have used to explore ideas around participatory classi-
fication. This section describes the prototype function-
ality, and Section 5 describes the design choices behind
the prototype.

The prototype has three main components, two of
which are user visible.

Figure 4: Example of trip notification and au-
thentication screen

4.1 Phone app
We have developed phone apps for both the android

and iPhone platforms. These are available for general
install using the app stores and have been designed so
that no interaction with the researchers is necessary for
install and ongoing use. The apps have 4 main func-
tions.

Figure 5: Sample list of trip sections and the
detail of one section showing the route taken

1. Display a set of onboarding screens that describe
the system and obtain consent from the user.

2. Obtain authentication to access to the data col-
lected by the Moves app installed on the same
phone (Fig. 4).

3. Display a notification prompting the user to clas-
sify all the unconfirmed trips (Fig. 4) from the past
week. Since we use a sync mechanism in the trip
confirmation flow, the notification does not need
to be responded to immediately, and unconfirmed
trips will simply be included in the next notifica-
tion. We can see this in Fig. 4, where the 18 trips
at 9pm have not been confirmed, and are included
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in the notification at midnight.
4. When the app is launched, display a list of uncon-

firmed trips and allow the user to confirm them
(Fig. 5).

4.2 Web app
The web app is responsible for exposing a REST API

that provides access to the data in several forms. It is a
fairly lightweight process that primarily reads data di-
rectly from a MongoDB instance and does not perform
significant postprocessing. A complete list of the cur-
rent API methods is provided in Table 2. In addition,
the webapp exposes a visualization UI for the aggregate
functions that is built using Javascript and NVD3 [17],
a lightweight wrapper on top of D3, invoking the REST
API for the data. Selected screenshots of the web UI
are shown in Figure 6.

Figure 6: Arrival times at work and popular bi-
cycle commute routes during the last two weeks
of Apr 2014 (2014-04-17 to 2014-05-01)

4.3 Analysis
To have a responsive interface, we perform the bulk

of the processing offline in batch mode. The results of
the offline processing are stored in the database for easy
access by the webapp layer. We sketch the algorithms
used in the analysis here - a more detailed description
is available in the Technical Report [21].

1. GPS trace retrieval We currently read GPS traces
using the Moves app, which also conveniently breaks
up the traces into trips and sections. As we inte-

grate with other sources, we may need to incorpo-
rate trip detection algorithms here as well.

2. Home and work location Once we have the raw
trip sections for each user, we detect home and
work locations automatically. We make the as-
sumption that the first trip section made after 5
am each day has a high probability of originating
from home. We define the place that a user spends
most of the time in a day (except home) as his/her
work location.

3. Commute mode sections To support statistics
on commute behaviour such as the arrival time
at work, we classify trip sections as commute and
non-commute. For the “to” commute trip, we do
this by finding the first trip segment that a user
made after 5am from home, and iterating over sub-
sequent trip segments until we find one that ends
at work. We use a similar heuristic for the “from”
commute trip. All other trips are labelled “non-
commute”.

4. Mode inference We use several features gener-
ated from the GPS data in order to generate a
predicted mode classification for unclassofied trips.
This includes not just non-motorized modes such
as walk and bike, but also, uniquely, motorized
modes such as car, bus, train and air. We orig-
inally attempted to use the general (G) and ad-
vanced (A) features from [25]. Since our readings
were obtained from smartphones, their granular-
ity was coarse, the feature calculations were not
very accurate, and the resulting accuracies, spe-
cially for motorized transport, were low. In re-
sponse, we added the following spatiotemporal fea-
tures, which allowed us to increase the accuracy for
motorized modes by around 30%.
(a) Bus/Train (B): Determine bus and train sta-

tion locations by looking at the start and end
points of bus and train trip sections, and us-
ing the DBSCAN [6] from the scikit-learn

library [18] algorithm to cluster them into sta-
tions.

(b) Location (L): Add the lat/lng coordinates of
the start and end points of the trip sections.

(c) Time (T): Add the hour of the trip as a fea-
ture. This allows us to avoid overfitting with
the location parameter.

5. SYSTEM DESIGN CHOICES
This section explores the design choices and lessons

learned from the development of the prototype. It fo-
cuses on design choices that are key to the framework
of pervasive classification - the interested reader is re-
ferred to the associated Tech Report [21] for additional
details.

To recap, our primary challenge is that of minimally
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Table 2: List of current API methods
API name PII? Method Description
/result/commute.modeshare.distance N GET Distance travelled by each mode in commute trips
/result/internal.modeshare.distance N GET Distance travelled by each mode inside the UC Berkeley campus
/result/commute.modeshare/zipcode/zc N GET Number of trips in each mode for a particular zip code
/result/commute.distance.to N GET Distance travelled during commute to work
/result/commute.distance.from N GET Distance travelled during commute from work
/result/commute.arrivalTime N GET Time at which users arrived at work
/result/commute.departureTime N GET Time at which users left work
/result/heatmap/carbon N GET Carbon intensity of various zip codes
/result/heatmap/pop.route/cal N GET Popular routes within the UC Berkeley campus
/result/heatmap/pop.route/commute/selMode N GET Popular routes for a particular commute mode
/result/carbon/all/summary N GET Aggregate transportation carbon footprint
/tripManager/getUnclassifiedSections Y POST The list of sections that a user needs to classify
/tripManager/setSectionClassification Y POST User confirmed ground truth
/compare Y POST The personalized carbon footprint for a particular user
/movesCallback Y POST Moves auth code that is exchanged for an access token

invasive ground truthing at scale. The design choices
that we used to address that challenge fall into three
main categories.

5.1 Motivate users
In order to motivate unpaid volunteers to give us

ground truth, we used the following techniques from
behavioral economics [7] and mapped them to our app
as follows:

1. Trigger: The trigger is an internal (That’s cool!
→ let me launch instagram) or external (You’ve
got mail! ) event that catches the user’s atten-
tion. Our app has an external trigger - it uses
the smartphone notification mechanism to prompt
users with trips to confirm.

2. Action: The trigger functions as a reminder to
perform an action. In our case, the action that we
want is for the user to confirm their trips.

3. Variable Reward: Since the user just completed
a task for us, we need to offer her a reward. Offer-
ing a monetary reward is not scalable for ongoing
data collection, so we offer information. We dis-
play the user’s carbon footprint (Figure 7), and
comparisons to both the average of other users,
and to an optimal value. This makes the informa-
tion both personalized and actionable. Since this
information is refreshed based on the confirmed
data, it is constantly changing, and the variable
reward increases engagement. This is clearly a
reward that primarily appeals to environmentally
conscious users, and we are exploring other reward
techniques in our ongoing work.

4. Investment: In our case, the confirmation is the
only investment we require. This is an area for fu-
ture improvement to further increase user engage-
ment.

5.2 Reduce burden
Participatory Classification techniques need to be min-

imally invasive, since the motivation is also slight. Here
are some techniques that we used to reduce the user
burden.

1. the app is publicly available in the standard app
stores. In our experience, this is critical for widespread
adoption. Before we put the apps in the public
stores, we found that it was challenging to get non-
technical users to install the apps - installing apks
on android was cumbersome, but the process to
install beta test iOS apps was so onerous that we
ended up physically connecting user phones to our
laptops for the install.

2. the trips are confirmed directly on the phone. In
our experience (Section 6.1), even with prompting
on the phone, user engagement reduces over time.
Given the higher cognitive load to remember to ac-
cess a website using a browser without prompting,
our intuition is that browser based confirmation
methods will see an even sharper drop off.

3. we use the mode inference algorithm from Sec-
tion 4.3 to pre-populate a predicted mode, so that
the user can typically confirm with one click.

In spite of these efforts, we saw a drop-off in the percent-
age of trips confirmed over time, which we have tried
to address through reducing the effort for confirmation
(see Section 6.1).

5.3 Consider privacy
Since our data is privacy sensitive, we have classi-

fied the methods that expose it into two groups - ones
that expose Personally Identifiable Information (PII)
and ones that don’t. As we can see from Table 2, all
methods that expose PII are HTTP POST methods,
and require a JSON Web Token (JWT) for authenti-
cation. These are currently accessed from the phone
apps, where we generate the JWT by authenticating
with Google.

We perform two levels of authentication. We use
OAuth to authenticate the user account. This allows
the same user to access their data from multiple devices.
We also use OAuth to authenticate with our GPS trace
provider (Moves) - this gives us the permission to read
the list of trips and sections that they have collected.

6. EXPERIMENTAL RESULTS
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Figure 8: Confusion matrices for different combinations of features and models

Figure 7: Personalized carbon footprint and re-
designed confirmation screen

This section sketches the characteristics of the data
that was collected, computes the accuracy of the auto-
mated inference algorithm, and evaluates the option of
using user models.

Although users consented to our privacy policy [3] by
downloading the apps from the app stores, they did not
provide explicit consent to having their data used for
research. So this paper will not include an analysis of
the detected travel patterns.

6.1 Behavioral Evaluation
We were able to collect 7439 trip sections from 44

users in the San Francisco Bay Area for a period of
roughly 3 months (2014-04-12 to 2014-07-18). Since
the data collection was not part of an official study
and participants were not paid, participants started and
stopped collection at various times. We can infer user
acceptance of the system by looking at the distribution
of trip sections over time and across users (Figure 9).
We can see that the total number of sections detected
was relatively constant, but the number of confirmed
sections went down every month. Further, the distri-
bution across users indicates that there were different
responses - disengaged (uninstalled the app), tolerant
(continued data collection but didn’t bother to con-
firm), and engaged (confirmed trips religiously).

In order to lower barriers to confirming, we have re-
designed the UI to highlight low confidence trips, allow
confirmation from the list view, and enable confirma-
tion of multiple trips at one time (Figure 7). The re-
designed UI was deployed roughly a month ago, and in-

8



formal feedback has been uniformly positive. We hope
to report those results over a longer time frame in the
future.

Figure 9: Number of confirmed trip sections per
month and per user. Users 36-39 are disengaged,
10 and 13 are tolerant, and 6 and 9 are engaged

Figure 10: Number of confirmed trip sections
per mode

6.2 Mode inference using an aggregate model

6.2.1 Evaluation metrics
As we can see from Figure 10, the distribution of trip

modes is skewed, and so the overall accuracy might be
a misleading metric. If the class specific accuracies are
not uniform, the overall accuracy may simply reflect
the proportion of high accuracy classes in the dataset.
So we evaluate the accuracy of our learning methods
separately for each mode. We do this by generating
a confusion matrix using stratified 5-fold validation, as
shown in Algorithm 1.

6.2.2 Feature and model selection

for (train, test) ∈ kFolds do
model = algo.fit(X[train], y[train]);
yPred = model.predict(X[test]);
cmRaw = confusion matrix(y[test], yPred);
// [610 12 1];
rptSum = repeat(sum).reshape();
// [623 623 623];
thisCm = cmRaw / rptSum // [98 2 0];
sumCm = sumCm + thisCm // [188 10 2];

end
avgPctCm = sumPctCm / kFolds

Algorithm 1: Stratified k-fold confusion matrix com-
putation

Table 3: Accuracy per mode with different sets
of features

Feature set walk cycle bus train car air
Generic 95 85 34 37 88 69.0
G+A 95 85 30 36 89 65.0
G+A+L 96 88 48 55 92 83.0
G+A+B 95 85 63 49 89 74.0
G+A+B+L 96 88 66 63 91 79.0
G+A+B+L+T 95 88 71 62 91 83.0

There are several potential sets of features and mod-
els that we can choose from. We used the scikit-

learn [18] library to evaluate the use of various combi-
nations of models and features. Based on the work done
in [25], we started with random forests as the model
and explored various feature sets, and then we picked
one feature set and validated the choice of model. We
present a summary of our results here. For more de-
tails on the experimental evaluation of different models,
please refer to the associated technical report [21].

Figure 8 and Table 3 show that while the accuracy of
walk and bike modes is uniformly high, the addition of
geospatial information doubled the accuracy of bus and
train modes. Therefore, we select the G+A+B+L+T(4.3)
feature set for further analysis.

After selecting features, we evaluated the use of other
learning algorithms. In [25], the other algorithms eval-
uated were primarily parameteric, and did not perform
well. Figure 8 shows that we were able to reproduce
this result using a linear SVM in which the parameters
were tuned using grid search. We also tried a different
non-parametric method (k-nn). which was better than
the parametric method, but worse than random forests.

Since the bad performance of linear models may be
due to the fact that the data is not linearly separable, we
also explored the use of non-linear kernels (rbf, poly,
sigmoid) with linear models (SGD, LDA, SVM) [21]. How-
ever, the best results with parametric models are still
worse than the random forest result, especially for the
train mode.

6.3 Mode inference using user specific models
As described earlier in Section 1, we think that a new

learning paradigm of building user specific models can
help improve accuracy. In order to test this hypothe-
sis, we took all users who had more than 150 confirmed

9



Figure 11: Confusion matrices for high accuracy
user models

trips, and built user-specific models, in which we con-
sidered only the prior trips for that user.

Using these models, we were able to find users for
whom mode inference accuracy is high although the per-
cent of motorized trips is fairly high. We pick two of
these and plot confusion matrices for them.

The results are shown in Figure 11. As we can see, the
motorized mode accuracies are higher than a combined
model. This indicates that this is a promising area to
explore.

6.4 Computer system scalability
Our initial prototype system ran on an Amazon AWS

micro instance with 1 vCPU and 1 GiB of RAM.
The metrics that we used to evaluate performance

and scalability are shown in Table 4. Note that some
of these metrics are generated from scripts that are run
periodically using cron jobs, so we can measure the total
run time in addition to the time taken for each opera-
tion.

As we can see Figure 12, the mongo DB sections.bson

file grows linearly with the growth in the number of sec-
tions. However, the other metrics don’t fare as well.
We see a dramatic increase in run times around the end
of Jun, a couple of weeks after we turned on our ma-
chine learning pipeline. The script to determine which
sections are commute sections, for example, ended up
taking a whole day, while even the mean response time
to return results was in the minutes. Note that, sim-
ilar to other work, most of the time spent in running
our pipeline is in reading the data and generating the
feature matrix. Additional performance charts are in
[21].

To work around these issues, we have moved from the
micro instance to an x-large instance (4 vCPU, 15 GiB,
SSD storage). We have also simultaneously switched to
collecting data with explicit consent for research, so the
number of trips (< 2000) is not sufficient to stress the
old system, let alone the new one. We will revisit this
issue once the size of the collected data approaches the
initially collected data.

7. FUTURE WORK

Our primary focus for future work will be on improv-
ing the phone layer, the web layer, and the analytics.

7.1 Phone layer
The primary challenge at the phone layer is to mo-

tivate people to share their travel behavior. We need
to do this by both reducing the work, and increasing
the rewards. We can reduce effort by improving phone
app design further, and increase rewards through some
form of gamification. In addition, although the Moves
team is working on optimizing power consumption, the
increased power drain is still noticeable. We should con-
sider our data needs and see if it is possible to write our
own data gathering that is more optimized to our work-
load.

7.2 Web layer
The primary challenge here is that of data access and

visualization. The current web app displays a subset
of data that we believe will be useful at the aggregate
level. However, we can easily imagine that there might
be other queries that might also be interesting to other
researchers. How do we change the web app to support
richer visualizations, and have the option for them to
be open ended? Do we support a rich, scriptable query
language for even more powerful access? How do we do
so without sacrificing privacy?

7.3 Analytics
Finally, we want to run additional analytics to recom-

mend actions that users and planners can take to reduce
carbon emissions. We need to think of these potential
recommendations, and then implement the code to de-
tect them using external data sources. We also need
to improve the carbon emission calculation to take into
account more complex factors such as carpooling, fuel
efficiency and so on.

8. CONCLUSION
We have motivated the need for Participatory Classi-

fication, a framework for minimally invasive, large scale
collection of ground truth from regular users. We have
presented an architecture that can be used to imple-
ment this framework, and described how we have used
this architecture to build and evaluate an end-to-end
system that has collected labelled trip patterns for 44
users in the San Francisco Bay Area over 3 months. In
order to reduce the burden on the user, we generate a
proposed classification, along with a confidence, which
allows users to quickly confirm the trip if the classifica-
tion is correct. Our accuracies for this proposed clas-
sification, are 60-95% using a set of speed and spatio-
temporal features modelled using a random forest. We
are able to perform aggregated analysis of travel pat-
terns and generate results such as popular routes by
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Table 4: List of scalability metrics
Metric Invocation Description
DB size N/A Size of the exported sections.bson file, in MB
Data retrieval */2, */4 Script that connects to Moves, retrives trip data for each user, and saves it to the database. Sleeps

for 2 minutes after reading data for every 10 users in order to stop overwhelming Moves. Originally
ran every two hours, switched to every 4 hours when the classification pipeline was enabled.

Commute sections 7 Script that reads sections for a user, determines home and work locations and commute trips, and
saves the commute flag back to the database

Pipeline */4 Script that reads the confirmed sections as the training set and auto-classifies unclassified and uncon-
firmed sections

getUnclassifiedSections N/A API call to read the sections that need to be classified by this user
compare N/A API call to read the carbon footprint results for this user

Figure 12: Changes in various performance metrics over time on the micro instance

mode and arrival times at work.
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